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Consensus from group interactions: An adaptive voter model on hypergraphs
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We study the effect of group interactions on the emergence of consensus in a spin system. Agents with discrete
opinions {0, 1} form groups. They can change their opinion based on their group’s influence (voter dynamics),
but groups can also split and merge (adaptation). In a hypergraph, these groups are represented by hyperedges
of different sizes. The heterogeneity of group sizes is controlled by a parameter β. To study the impact of β on
reaching consensus, we provide extensive computer simulations and compare them with an analytic approach for
the dynamics of the average magnetization. We find that group interactions amplify small initial opinion biases,
accelerate the formation of consensus, and lead to a drift of the average magnetization. The conservation of the
initial magnetization, known for basic voter models, is no longer obtained.
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I. INTRODUCTION

The formal analysis of spin systems in statistical physics
dates back to 1920, when Wilhelm Lenz and Ernst Ising de-
veloped the first mathematical model of ferromagnetism [1].
Today, we could rightly call it a multiagent model [2,3].
The entities, i.e., the atoms or agents, are characterized by
a degree of freedom, their spin si(t ) ∈ {−1,+1}, which is a
discrete variable representing the direction of the magnetic
dipole moment. The si(t ) can change over time because of
interactions between agents, which are expressed by coupling
constants Ji j . Whether or not two agents i and j can interact
is defined by an underlying topology, for instance a one- or
two-dimensional regular lattice in the case of the original
Ising-Lenz model. The macroscopic state results from the
superposition of all interactions, i.e., the dynamics can be de-
composed into pairwise interactions between any two agents
i and j, with Ji j = 0 if these agents are not neighbors.

In this paper, we extend this view by considering additional
group interactions. A group refers to a number of agents that
interact jointly and simultaneously, i.e., the group interaction
cannot be decomposed into pairwise interactions. Such group
interactions are relevant in diverse systems composed of many
agents, ranging from physics [4–6] to neural networks [7] and
ecology [8]. To adequately represent group interactions, in
Sec. II A we utilize the concept of a hypergraph [9]. Like
a network, a hypergraph consists of nodes and edges. In a
simple network, these edges represent pairwise interactions,
while in a hypergraph, hyperedges represent groups of agents.
Hence, hyperedges can have different sizes, and interactions
between different groups are represented by overlaps between
hyperedges.

To define interactions between groups of agents, we use
the voter model, a well-studied spin system [10–13]. The term
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“voter” [14,15] refers to an agent with a discrete “opinion,”
si(t ) ∈ {0, 1}, i.e., the agent is either in favor (si = 1) or
against (si = 0) a given issue. In the most basic version of the
voter model, two agents i and j are randomly chosen from the
whole system, and agent j gets assigned the opinion of agent
i, i.e., s j (t + 1) = si(t ). This means that if the two agents
already had the same opinion, nothing changes; otherwise, the
opinion of agent i is replicated. Extended versions of the voter
model consider specific network topologies, such as lattices
or complex networks, to define the pairs of agents that can
interact [16–18]. The main question always regards the final
macroscopic state: will all agents over time have the same
opinion or not? To quantify the outcome, the global fraction
f (t ) of agents with opinion 1 is used, from which one can de-
rive the magnetization of the spin system, M(t ) = 2 f (t ) − 1.
If either M = +1 or −1 in the long run, the final state is
denoted as consensus. Otherwise, one finds a coexistence of
the two opinions.

For different variants of the voter model, the time to reach
consensus [19,20], the conservation of magnetization [12,21],
and the coexistence of opinions [17,22,23] have been studied.
To additionally consider the effect of group interactions, the
majority rule has been proposed [24,25]. It assumes that at
each time step a number n � 3 of agents is selected and adopts
the majority opinion in the group of selected agents. In case
of a stalemate, additional rules were proposed to break the
symmetry [26].

To avoid the static neighborhood structure, adaptive voter
models have been proposed [27,28]. They consider the co-
evolution of agents’ interactions and opinions [29–31], often
on different timescales. We will build on these works with
our modeling approach that applies adaptive voter models to
hypergraphs. Our work complements, and contrasts, the work
by Horstmeyer and Kuehn [32], who also consider group in-
teractions in the adaptive voter model, albeit on the basic level
of simplicial complexes of size two. That means that group
interactions are again decomposed, this time into interactions
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between three agents that form a triangle, or 2-simplex. Addi-
tionally, pairwise interactions and nodes totally disconnected
from others are considered.

In [32] the opinion dynamics inside 2-simplices is mo-
tivated by peer pressure, following the majority rule. That
means that a majority of two agents (with the same opinion)
influences a minority of one agent (with a different opinion)
to adopt their opinion. It should be noted that the influ-
ence of larger groups, and within larger groups, was already
formalized in models of social impact [33,34]. They even
captured different forms of peer pressure, such as persuasion
and support [35], taking social distances in larger groups and
weights of opinions into account. Also models of continuous
opinion dynamics considered the weighted influence of larger
in-groups [36,37].

To overcome the shortcomings that result from the de-
composition into 2-simplices, we follow a route that was
already mentioned, but not taken, in [32], namely to build on
hypergraphs. These structures are already used to study the
consensus dynamics resulting from the majority rule [25], but
with a restriction to groups of size 3. Here, we extend this
approach to consider hypergraphs with groups of different and
arbitrarily large sizes, n. Their distribution π (n) is controlled
by a parameter β that accounts for the heterogeneity in group
sizes. We specifically study the impact of this heterogeneity
on the consensus formation.

Our model extends the adaptive voter model by Durrett
et al. [28] in that we generalize its rules for hypergraphs.
Specifically, in our model at each time step a group of size n
is selected. If n = 2, i.e., if we have pairwise interactions, we
use the rules of opinion adoption and rewiring based on [28].
If n � 3, we propose a generalization of the adoption and
rewiring processes, which we call influence and split-merge
processes. The former assumes that the minority in the group
changes their opinion with a specific probability, while the
latter considers that the minority leaves the group and merges
with another group. An additional parameter γ defines the
threshold to distinguish between these processes, and its im-
pact is studied in our paper.

We analyze this model using a variation of a mean-field
approximation called a heterogeneous mean-field (HMF) ap-
proximation, where at each time step agents are randomly
chosen to form a group with a size sampled from the distribu-
tion π (n). This is a valid approximation for highly connected
hypergraphs. The focus of our paper is on the dynamics of
the average magnetization. We provide extensive computer
simulations to study this dynamics dependent on the model
parameters β, γ and the system size. Importantly, we also
develop an analytical model with noise that can accurately
describe the simulations for a wide range of parameters. The
analysis indicates that, compared to the case of only pairwise
interactions, group interactions reduce noise, amplify small
initial opinion biases, and accelerate the convergence toward
consensus. In contrast with the basic voter model, the initial
magnetization of the system is not conserved. Instead, we
observe a drift of the average magnetization in the direction
of the initial bias, which increases with the heterogeneity in
group sizes.

The remainder of this paper is divided into three sec-
tions. In Sec. II, we formally introduce hypergraphs and

the dynamic assumptions of our model. This is followed
by three sections that present results at different levels.
Section III contains results from computer simulations to
provide an orientation about the dynamics and the impact of
the different model parameters. Section IV presents analytical
results for the average magnetization without and with noise.
They allow us to calculate a switching rate for the sign of
the magnetization trajectories. Section V compares analytical
and simulation results numerically in order to demonstrate
their good agreement. Finally, we present our conclusion in
Sec. VI.

II. AN ADAPTIVE VOTER MODEL ON HYPERGRAPHS

A. The dynamics of the adaptive voter model

To define our model, we remind the reader that the fol-
lowing discussion addresses three different levels of model
complexity. On the basic level, we consider an adaptive voter
model on a simple network, on the second level we generalize
this model to hypergraphs, and on the third level we apply a
heterogeneous mean-field (HMF) approximation to the hyper-
graph model in order to obtain analytical results.

As already mentioned, the basic voter model considers
pairwise interactions between two agents i and j. These agents
have to be neighbors to interact, i.e., if we assume ferromag-
netic coupling, the interactions have the form

Ji j =
{

1 if (i, j) ∈ E ,

0 otherwise, (1)

where E ⊂ V × V denotes a set of edges between a set of
nodes V , which both define a network G(V, E ). Specifically,
the Ji j defines the elements of the adjacency matrix that con-
tains full information about the network topology.

Each agent i is characterized by its spin, or state, or
“opinion,” si(t ) ∈ {0, 1}, which can change because of the
interaction with neighboring agents. As explained above, the
basic dynamics reads

si(t + 1) = s j∈ni (t ), (2)

i.e., agent i adopts the opinion of a randomly chosen agent j
from its neighborhood ni. If i is connected to ni other agents on
the simple network, i.e., it has a degree ni, then the probability
that one of these neighbors has the opinion s = 1 is

f (1)
i (t ) ≡ fi(t ) = 1

ni

∑
j∈ni

s j (t ), (3)

where f (s)
i defines the local frequency of opinion s in the

neighborhood of i [38]. We will normalize this to the opinion
s = 1, hence f (1)

i = fi, while f (0)
i = 1 − fi. If fi(t ) > 0.5, i.e.,

if opinion 1 is the majority opinion, then the opinion of i
in the next time step will be more likely also si(t + 1) = 1.
Specifically, pi(si, t ) denotes the probability to find agent i
with opinion si at time t . Its change in time is given by the
master equation:

pi(si, t + 1) − pi(si, t ) ≈ d pi(si, t )

dt

= w(1 − si|si )pi(si, t )

− w(si|1 − si)pi(1 − si, t ), (4)
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where the transition rates in the case of the simple voter model
read [13,38]

wi(1 − si|si ) ∝ f 1−si
i . (5)

That means a change of the opinion of agent i depends linearly
on the frequency of the opposite opinion in the neighborhood
of i. It is known that the linear voter model always reaches
consensus, but which opinion makes up for this consensus is
randomly decided.

The systemic variable is the magnetization M(t ), which
follows from the total fraction of agents with opinion 1,

M(t ) = 2 f (t ) − 1, f (1)(t ) ≡ f (t ) = 1

N

∑
i

si(t ). (6)

It monitors whether the system will reach consensus, |M| =
1, or coexistence with 0 � |M| < 1. The linear voter model
shows a conservation of magnetization [12]. That means the
initial fraction of agents with opinion 1, f (0), already tells
how often T simulation runs will end up with a consensus of
opinion 1 [38].

To obtain the system dynamics, i.e., the expected dynam-
ics of M(t ), we have to average over a large number of
independent simulations, where the initial condition M(0)
plays an important role. Because we initially assign opinions
randomly to agents, only the expected initial magnetization,
E[M(0)] = 〈M(0)〉, is fixed. Actual values of M(0) follow
from a binomial distribution for f (0). So, we have two sources
of randomness, or “noise,” when initializing our system: (i)
deviations of M(0) from the expected value 〈M(0)〉, and (ii)
deviations in initial configurations, i.e., specific assignments
of opinions to agents, for the same value M(0). This noise
can lead to different final states characterized by a different
magnetization, as we will show below.

In the following, we use the average 〈M(t )〉 to denote
E[M(t )]. An initial condition 〈M(0)〉 = 0 implies a symmetry
between opinions. Hence, averaging over many simulations
would cancel out the dynamic effects that lead to consensus
of one opinion. To avoid trivial outcomes, we therefore use a
nontrivial initial condition 〈M(0)〉 > 0, i.e., an initial bias that
on average breaks the symmetry in favor of opinion 1. Note
that specific initial configurations can still deviate from this.
We will study the impact of this initial bias on the dynamics
to reach consensus.

The adaptive voter model adds a new degree of freedom
to the dynamics. Agents can not only adapt their opinions,
they can also rewire the links to their neighbors j ∈ ni with
a certain probability r. This applies only if the two agents i
and j have different opinions. Then, with a probability 1 − r,
the dynamics follows the master Eq. (4) for adaptation, and
their edge (i, j) remains. With a probability r, this edge (i, j)
is deleted and two new edges (i, k) and ( j, l ) are created,
where si = sk and s j = sl . As a result, both i and j each
are linked to an agent with the same opinion they have, and
the density of the network, specifically the number of edges
between agents with the same opinion, has increased. The
rewiring mechanism strengthens the respective majorities in
the neighborhood of both agents i and j. Differently from [28],
our rewiring mechanism creates two edges, not only one.

B. From pairwise to group interactions

Now we move the adaptive voter model to hypergraphs.
Similar to a network, a hypergraph H(V, E ) is described by the
set of nodes, or agents, V , and the set of hyperedges, E . These
differ from the edges E of the simple network as they now
connect groups of agents. Thus, hyperedges basically repre-
sent groups of different sizes. A group a is described by an
n-tuple of agents, a = (i, j, . . . ), where |a| = na denotes the
group size. That means with na = 2 we are back at the simple
network that only considers pairwise interactions. Therefore,
we denote these edges as simple edges.

We can adopt the above definitions for frequencies and
transition rates on simple networks to now describe groups.
The frequency of agents with opinion 1 in group a follows
from Eq. (3):

f (1)
a (t ) ≡ fa(t ) = 1

na

∑
i∈a

si(t ), f (0)
a (t ) = 1 − fa(t ). (7)

The majority of agents in group a has opinion s if f (s)
a > 0.5.

Further, the transition rate to change the opinion, Eq. (5), now
refers to the group, i.e.,

w(1 − si|si ) ∝ f (1−si )
a , i ∈ a. (8)

This implies that the group would not change any opinion if
all agents in the group have the same opinion.

While the adaptation of opinions inside the group does not
differ from the dynamics assumed for the simple network,
the rewiring mechanism becomes different if groups have a
size na > 2. Instead of rewiring versus adaptation, we now
consider processes on the group level: split and merge on the
one hand, and influence on the other. To distinguish between
them, we introduce a threshold parameter 0 � γ � 1 that
defines an interval for the group frequency fa(t ). We consider
two cases:

(i) fa < γ or fa > (1 − γ ): This means that there is a clear
majority in the group, either of agents with opinion 1 ( fa >

1 − γ ) or of agents with opinion 0 ( fa < γ ). In this case, the
majority can influence the minority such that the latter change
their opinion toward the majority opinion with a transition rate
given by Eq. (8). Agents with the majority opinion will not
change their opinion. Specifically,

w(1 − si|si ) ∝ f 1−si
a , w(si|1 − si) = 0 if f 1−si

a > f si
a ;

w(1 − si|si ) = 0, w(si|1 − si ) ∝ f si
a if f 1−si

a < f si
a . (9)

In case of a tie, i.e., fa = 0.5, the “minority” opinion is chosen
randomly. Note that this influence does not necessarily lead
to group consensus because the transitions occur only with a
certain probability.

(ii) γ < fa < (1 − γ ): This means, the fractions of agents
with opinion 1 and of agents with opinion 0 are of comparable
size, i.e., the majority is not sufficiently large and it does not
dominate the group. In this case, the group will split into two
smaller groups, one for each opinion. If the former group has
size na and fraction fa, the two new groups a1 and a2 have the
sizes na1 = fana, na2 = [1 − fa]na and the composition fa1 = 1
and fa2 = 0.

Subsequently, these two groups will merge with other
groups b and c that have their opinion as the majority opinion.
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For instance, if group b has size nb and fb > 0.5, then group
a1 will merge with b to obtain a new group b1 with

nb1 = nb + na1 , fb1 = fbnb + na1

nb + na1

. (10)

Group a2, however, will merge with group c if fc < 0.5, and
we have a new group c1 with

nc1 = nc + na2 , fc1 = fcnc

nc + na2

. (11)

The groups b and c are randomly chosen from those groups
that fulfill the conditions fb > 0.5 and fc < 0.5. The two new
groups that result from the merger become hyperedges in the
modified hypergraph.

III. RESULTS OF COMPUTER SIMULATIONS

A. Heterogeneous mean-field approximation

With the adaptive voter model specified for a hypergraph,
we are now interested in whether the system will reach con-
sensus, characterized by a magnetization |M| = 1. We study
in particular how consensus depends on the initial configura-
tion of the hypergraph, that is, on the distribution of group
sizes and on the bias in the initial opinion distribution. In this
section we perform numerical simulations, while in the next
section we present two analytical studies.

For the initial distribution of opinions, we use the bias
〈M(0)〉 and randomly assign opinions such that the expected
fraction of agents with opinion 1 is [1 + 〈M(0)〉]/2. To assign
agents to groups of different sizes na, we assume that group
sizes vary and follow a Poisson distribution on the support
n ∈ [2,∞):

π (n) = 1

β
e− n−2

β . (12)

This distribution is chosen because we assume that establish-
ing larger groups should be more costly and therefore happen
less frequently. The parameter β ∈ [0,∞) will be varied in the
following. It determines the mean group size 〈π (n)〉 = 2 + β,
and the standard deviation is σπ (n) = β. That means that the
higher the β is, the more likely it is that large groups are
formed.

To study the dynamics of the hypergraph, we proceed as
follows: At each time step, we sample the group size na

from the exponential distribution. We then randomly assign
na agents to this group to form a hyperedge. To this group we
apply the rules specified in Sec. II B and then move to the next
time step. We continue until an equilibrium is reached, which
means that the system has reached consensus. This state can
indeed be achieved because we do not restrict interactions.

Our sampling procedure is a variation of a standard
technique in epidemiology called the heterogeneous mean-
field approximation [39]. First, we assume that all agents
can interact and therefore can potentially be in the same
group. If the number of groups is large, this is akin to a
mean-field approximation in which every agent interacts with
every other agent. Secondly, over time agents have been
assigned to different groups of various sizes. This reflects
the heterogeneity. Over time, groups overlap if they contain
agents previously assigned to other groups, i.e., hyperedges

FIG. 1. Dynamics of the magnetization for 50 simulations start-
ing from the same initial configuration with M(0) = 0.08 
= 0.
Parameters: N = 100, p = 0.5, β = 1.5, γ = 0.3.

overlap and form the hypergraph. Because of the mean-
field approximation, we can assume that the distribution of
group sizes π (n) is not affected by the dynamics on the
hypergraph.

B. Dynamics of magnetization

To study the convergence to consensus on the hyper-
graph, we use the magnetization M(t ), Eq. (6). The time
to consensus, teq, is given by the first time step in which
|M(teq)| = 1. Given an initial configuration with a positive
bias, we expect the system to quickly reach an equilibrium
with M = 1. But fluctuations might impact the system such
that instead the equilibrium at M = −1 is reached. Figure 1
shows the respective dynamics for a fixed initial configuration
of opinions. We see that the system always reaches total con-
sensus. Because the initial magnetization M(0) is small, but
positive, for the majority of the simulations the final magne-
tization is M = +1, but fluctuations allow also convergence
to M = −1.

In Fig. 2, we show how the average final magnetization
depends on the heterogeneity of the group sizes, expressed
by β. Given the initial bias of 〈M(0)〉 = 0.1, we see that
for a low group size heterogeneity the final magnetization
fluctuates around 0.1. But with increasing heterogeneity, it
approaches values close to 1.0. This has two implications.
First, we see that the initial magnetization is not conserved

FIG. 2. Final average magnetization vs β for various values of
N for 〈M(0)〉 = 0.1. Each data point is averaged over 20 trajectories
and 10 initial configurations.
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FIG. 3. Time to equilibrium (log scale) vs (a) β and (b) γ . Pa-
rameters: N = 100, r = 0.5, E[m0] = 0.1. (a) γ = 0.3, (b) β = 3.
The points and the shaded area are the average and the standard
deviation of the time of convergence for 100 trajectories of 50 initial
configurations for a given γ .

as in the simple linear voter model. There, we would ex-
pect a final average magnetization equal to the initial one,
as we see it for small values of β. However, in our model
with increasing β we observe a drift in the average mag-
netization away from the initial value, towards +1. At the
same time, Fig. 2 shows that the average final magnetiza-
tion does not always converge to 〈M〉 = +1, dependent on
the system size. The observation means that a non-negligible
fraction of trajectories ends up with the opposite magnetiza-
tion M → (−1). This effect is more pronounced for smaller
system sizes and could indicate both finite-size effects and
the impact of noise. We need to address this problem in
Sec. IV.

Secondly, even though the average magnetization stays
between −1 and +1, the system in every single run reaches
consensus, as also shown in Fig. 1. With increasing values
of β, this consensus is more biased towards opinion +1,
which was supported by the initial condition 〈M(0)〉 = 0.1.
Hence, group interactions obviously amplify the small initial
bias. This is to be expected because with increasing β we
sample more agents in each time step. The average group
size becomes larger, which means it is less likely that the
minority opinion would be reinforced. Instead this process
reinforces the majority already present, hence it increases the
final average magnetization. We have verified that this drift
effect is increased if the initial bias 〈M(0)〉 becomes larger.

In Fig. 3 we study how quickly the system reaches its
equilibrium dependent on the two model parameters β and γ .
We find that, for fixed γ , the time to equilibrium teq decreases
with β, i.e., group interactions accelerate the convergence to
consensus. This is not trivial because during group interaction,

agents adopt the opinion of the majority only if the influence
process takes place. This happens only if γ is large enough,
i.e., if there is already a strong majority in the group with
fa < γ or fa > (1 − γ ). When γ is small, the split-merge
process becomes more likely.

To explore the effect of γ on the time to reach consensus,
we plot teq versus γ in Fig. 3(b). For high values of γ , the
system converges significantly faster because the influence
process dominates. A closer inspection shows a stairlike de-
crease, i.e., there are some small ranges of γ in which the teq

is almost constant. This is due to the discrete size of groups
that imply fa is a rational number.

The computer simulations have motivated us to study fur-
ther the impact of the model parameter β instead of γ . The
latter only indirectly determines group effects on the opinion
dynamics by specifying whether influence takes place. β, on
the other hand, explicitly affects the opinion dynamics via
the heterogeneity of group sizes in a probabilistic manner.
In the following, we present two analyses about the influ-
ence of β. First, we develop an analytical approximation
for the average magnetization using the master Eq. (4). This
will assume that agents update their opinions independent
from another in groups of varying sizes. As a second step,
we improve this approximation by using the Kramer escape
formula.

IV. ANALYTIC RESULTS

A. Derivation of the expected magnetization

We now develop an analytical approximation for the dy-
namics of the expected magnetization E[M(t )] = 〈M(t )〉 of
the system in the limit of the HMF dynamics used above. This
requires us to average over all individual stochastic dynamics
given by the master Eq. (4). To do this, we assume that at each
time step agents update their opinions independently. Hence,
we move our focus away from groups towards agents as the
units of analysis, to make the summations required for the
averaging procedure tractable.

Let us randomly sample one focal agent out of N agents
and a group size n from the distribution π (n), Eq. (12). Agents
change their opinions dependent on the group. Thus, we first
have to determine whether the agent belongs to the group
of size n. In the HMF limit, groups can be composed of
possibly all agents. Thus, we have to consider that there are(N

n

)
different groups of size n. The number of groups that

include the focal agent is then
(N−1

n−1

)
. Hence the probability

that the focal agent belongs to a randomly chosen group is(N−1
n−1

)
/
(N

n

) = n/N , which coincides with the probability of a
random sampling.

We assume that the focal agent changes its opinion from
0 to 1, which is expressed by the transition rate w(1|0). This
rate is composed of a term w(0|1, n) that describes the opinion
change given the presence of the group of size n and a second
term that depends on the probability π (n) to have a group of
size n times the probability that the focal agent is part of it. In
combination, we obtain

w(1|0) =
N∑

n=2

π (n)
n

N
w(1|0, n). (13)
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Depending on n, the focal agent has either a pairwise inter-
action (n = 2) or a group interaction (n � 3). For n = 2, the
focal agent can change its opinion only if the other agent
has the opposite opinion and if an adoption of the new opin-
ion, rather than rewiring, occurs. The first condition is met
with probability N f /(N − 1) ≈ f because in the HFM regime
the other agent is chosen uniformly at random among the
remaining N − 1 agents. The second condition is met with
probability (1 − r). In combination, we obtain for pairwise
interactions

w(1|0, n = 2) = f (1 − r). (14)

For n � 3, we have to consider the two different possibilities
for group interactions, namely either adoption of the oppo-
site opinion or split-merge processes. According to Eq. (9),
adoption occurs with a probability k/n, where k is the number
of agents with opinion 1 in the group, but only if k/n >

1 − γ . The probability that k agents have opinion 1 in the
chosen group of size n is approximated by the binomial distri-
bution

(n−1
k

)
f k (1 − f )(n−1−k). This holds because the group

is formed by randomly grouping (n − 1) agents from the
remaining (N − 1) agents. Among these (N − 1) agents, a
fraction N f /(N − 1) ∼ f has opinion 1 and the remaining
fraction has opinion 0. Hence, k agents have opinion 1 with
probability f k , and the remaining (n − 1 − k) agents have
opinion 0 with probability (1 − f )(n−1−k).

Finally, the binomial coefficient considers the different
possible combinations of having k agents with opinion 1 and
(n − 1 − k) with opinion 0. Note that, as the focal agent
with opinion 0 already belongs to the group, the binomial
coefficient allows choosing only up to n − 1, and not up to
n, agents with opinion 1. In combination, the transition rate
for the focal agent to adopt the opposite opinion because of
group influence becomes

w(1|0, n � 3) =
n−1∑

k=n(1−γ )�

(
n − 1

k

)
f k (1 − f )(n−1−k) k

n
,

(15)
where the summation starts from k = n(1 − γ )� as influence
occurs only when k/n > 1 − γ .

By inserting Eqs. (14) and (15) into Eq. (13), we finally
obtain the transition rate

w(1|0) = π (2)
2

N
(1 − r) f

+ π (n)
n

N

n−1∑
k=n(1−γ )�

(
n − 1

k

)
f k (1 − f )(n−1−k) k

n
.

(16)

A similar expression can be derived for the opposite transition
rate:

w(0|1) = π (2)
2

N
(1 − r)(1 − f )

+ π (n)
n

N

n−1∑
k=n(1−γ )�

(
n − 1

k

)
(1 − f )k f (n−1−k) k

n
.

(17)

With these transition rates, we obtain from the master equa-
tion in the HMF limit

df (t )

dt
= d p(1, t )

dt
= w(1|0)(1 − f ) − w(0|1) f

= f (1 − f )
N∑

n=3

π (n)
n−1∑

k=n(1−γ )�

k

N

×
(

n − 1

k

)
[ f k (1 − f )n−k − (1 − f )k f n−k]. (18)

We note that this dynamics has become independent of the
rewiring rate r. With Eq. (6) we find for the expected change
in the average magnetization

〈M(t + 1) − M(t )〉

= 2

⎧⎨
⎩

N∑
n=3

π (n)
1

N

n−1∑
k=n(1−γ )�

k

(
n − 1

k

)

×
[(

1 + 〈M(t )〉
2

)k(1 − 〈M(t )〉
2

)n−k

−
(

1 − 〈M(t )〉
2

)k(1 + 〈M(t )〉
2

)n−k]⎫⎬
⎭. (19)

A further simplification of this equation is given in the Ap-
pendix. From Eq. (19), it can be easily shown that for 0 <

〈M(t )〉 < 1 the summand is positive and for −1 < 〈M(t )〉 < 0
it is negative for every value of k since γ � 1

2 . This means that
as long as there are higher-order interactions (β 
= 0), the only
fixed points of the dynamics are 〈M〉 = 0, 1, and −1. Based
on the signs, 〈M〉 = 0 is unstable while 〈M〉 = ±1 are stable
fixed points. Therefore, starting with 〈M(0)〉 > 0, we should
expect that the magnetization averaged over many trajectories
and initial configurations always goes to total consensus with
opinion 1 for β 
= 0.

These expectations can now be compared with the results
of computer simulations for various system sizes already
shown in Fig. 2. There we found that the average final magne-
tization does not converge to 〈M〉 = ±1, but it stays between
−1 and +1. The effect is more pronounced for small values of
β, but it remains even for high values of β, dependent on the
system size.

This leaves us with two hypotheses about the reasons for
the deviations from the analytical expectations: (i) the ex-
istence of a finite-size phase transition with β as the order
parameter, (ii) the influence of noise. To check hypothesis
(i), we followed the method explained in [40]. We applied
the finite-size analysis to the data depicted in Fig. 2 and to
additional data for a different 〈M(0)〉 = 0.35. We verified
that there is no combination of critical exponents and critical
values of the order parameter that would result in a scaling.
This implies that there is no finite-size phase transition with β

as the order parameter.
Prompted by this, we have to investigate hypothesis (ii),

i.e., whether the curves of the plots in Fig. 2 can be explained
by noise from sampling finite systems.
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B. Analysis with noise

The magnetization of the initial configurations follows a
binomial distribution with mean 〈M(0)〉 and nonzero vari-
ance. Therefore, some initial configurations are more prone to
“switching” their magnetization, while others are more robust.
To estimate this noise effect, we calculate the probability that
a magnetization trajectory changes its sign starting from an
average initial magnetization 〈M(0)〉.

We consider a stochastic force on the magnetization tra-
jectory. Assuming that each trajectory is independent, this
translates to adding a stochastic force to the magnetization
dynamics averaged over many initial configurations and tra-
jectories, as given by Eq. (19). We study the dynamics in
the continuum limit 〈M(t + 1) − M(t )〉 ≈ d〈M(t )〉/dt . This
is a reasonable approximation since the time to converge to
consensus is of the order O(103), as shown in Fig. 3. The
right-hand side of Eq. (19) is a one-dimensional function
of 〈M(t )〉 and can therefore be expressed as a conserva-
tive force resulting from the gradient of a potential U (〈M〉).
Equation (19) can then be rewritten as an overdamped
Langevin equation:

λ
d〈M(t )〉

dt
= −dU (〈M〉)

d〈M〉 + η(t ), (20)

where λ is the damping coefficient. η(t ) is Gaus-
sian noise with 〈η(t )η(t ′)〉 = 2Dδ(t − t ′), where D =
kBT /λ is the diffusion constant and kBT is the effective
temperature.

To make U (〈M〉) independent of finite-size effects, we use
the fact that the series in Eq. (19) converges for n → ∞.
We further assume N → ∞; in this way, the factor 1/N
in Eq. (19) is absorbed into the damping coefficient λ and
the effective temperature kBT . dU (〈M〉)/d〈M〉 is then given
by the right-hand side of Eq. (19) without the term 1/N .
The values of λ and kBT are not known, however they are
expected to depend only on the quantities N and β given
that the other parameters stay constant; i.e., λ = λ(N, β )
and kBT = kBT (N, β ).

From the discussion of Eq. (19), we know that the dy-
namics has three fixed points, two stable ones at 〈M〉 = ±1
and one unstable one at 〈M〉 = 0. Therefore, the potential
U (〈M〉) has a double-well shape with the potential barrier
at 〈M〉 = 0. Our initial question of whether a magnetization
trajectory could change its sign can now be recast as an
escape from a potential well. This is a classical problem in
statistical physics, described by Kramer’s escape rate for-
mula [41]. It allows us to estimate the escape probability
by means of an activation energy Eb � kBT and the second
derivative of the potential U taken close to one of the potential
minima.

In contrast with Kramer’s setup, in our case the trajectories
at t = 0 are not near the bottom of a well, but close to the top
of the barrier. However, based on the derivation for Kramer’s
escape rate formula [41], it can be shown that the formula
is still applicable for Eb � kBT and 〈M〉 close enough to
the top of the barrier. Because in our case 〈M(0)〉 = 〈M〉 =
0, we further approximate the curvature of the potential as
U ′′[〈M(0)〉] ≈ U ′′(0). With this, Kramer’s escape rate, which
is in our case the rate S of switching the magnetization,

FIG. 4. Switching rate S vs initial magnetization 〈M(0)〉. Param-
eters: N = 100, r = 0.5, β = 1.5, γ = 0.3. The red points and the
shaded area are the mean and the standard deviation of the switching
rate averaged over 50 trajectories and 30 initial configurations. The
black line is the best fit (R2 = 0.88) of S, Eq. (21), with kBT =
0.010 ± 0.007 and λ = 0.45 ± 0.02.

becomes

S = |U ′′(0)|
2πλ(N, β )

e− Eb
kBT (N,β ) , (21)

where Eb = U (0) − U [〈M(0)〉], i.e., Eb is measured in terms
of the initial magnetization 〈M(0)〉. We calculated the cur-
vature analytically by differentiating U (〈M〉) with respect to
〈M〉, while the energy barrier U (0) was obtained from numer-
ical integration.

To relate the analytic expression for the switching rate,
Eq. (21), to our computer simulations, we chose an initial
positive magnetization 〈M(0)〉 > 0 and simulated many tra-
jectories for varying initial configurations with fixed N and
β. The switching rate is then given by the fraction of those
trajectories whose final magnetization has become negative.
An example is shown in Fig. 4 together with the best fit for
Eq. (21).

V. NUMERICAL RESULTS

A. Scaling relations for λ and kBT

For a complete understanding of the system dynamics,
we still have to determine the scaling relations of kBT (N, β )
and λ(N, β ) dependent on the system size N and the group
heterogeneity β. To obtain these relations, we used parallel
computing facilities and repeated the procedure behind Fig. 4
for varying values of β ∈ [1.0, 3.0] and for seven different
values of N . For every β and N , the fitted values of kT and λ

were used to test that the two assumptions to apply Kramer’s
escape rate formula were satisfied, i.e., U ′′[〈M(0)〉] ≈ U ′′(0)
and Eb � kBT .

The results are shown in Fig. 5. We verified that the slopes
are approximately equal for every value of N while the inter-
cepts depend on N . Following a similar procedure for constant
β, we found that the slope of ln(λ) and ln(kT ) versus ln(N )
can be accurately approximated to be independent of β. Based
on these observations, we propose the following scaling rela-
tions:

kBT (N, β ) ∝ eδNνβμ, λ(N, β ) ∝ eζ Nθβκ . (22)
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(a)

(b)

FIG. 5. (a) ln(kT ) and (b) ln(λ) vs ln(β ) for seven values of N
for r = 0.5 and γ = 0.3. The R2 of the fitting lines are on average
0/85 and at least 0.78 (a) and 0.75 (b).

For the rewiring probability r = 0.5 and γ = 0.3, the values
of the coefficients were calculated as

μ = +0.768 ± 0.042, κ = +1.651 ± 0.060,

ν = −0.882 ± 0.001, θ = −0.004 ± 0.085,

δ = −0.983 ± 0.002, ζ = −1.698 ± 0.136. (23)

These scaling relations can now be used to calculate S,
Eq. (21), for a large range of N and β. It is important to note
that the scaling relations indeed only hold as long as the above
two assumptions to apply Kramer’s escape rate formula were
satisfied. We tested that the power-law scaling breaks down in
parameter regions where the two assumptions do not hold.

B. Impact of the switching rate

Now that we know the switching rate S, Eqs. (21) and (22),
of a magnetization trajectory due to noise, we can calculate
its impact on the average magnetization, 〈M(t )〉, given by
Eq. (19). The corrected average magnetization is

〈Mc(t )〉 = [1 − 2S]〈M(t )〉. (24)

The factor [1 − 2S] comes from the fact that the fraction
of trajectories that change their sign due to noise increases
negative magnetization (S), but also decreases the fraction of
trajectories that contribute to positive average magnetization
([1 − S]). In Fig. 6 we plot the analytical result for the dy-
namics of the average magnetization, Eq. (24), without noise
(S = 0) and with noise (S 
= 0), and we compare it to the dy-
namics obtained from computer simulations. Obviously, if the
impact of noise is considered, the analytical model accurately
captures the simulations.

The large error bars in Fig. 6 reflect that each magne-
tization trajectory reaches either +1 or −1 at equilibrium.

FIG. 6. Average magnetization, Eq. (24) (black) and from simu-
lations (red) over time. (a) S = 0, (b) S from Eq. (21). Parameters:
N = 200, 〈M(0)〉 = 0.1, β = 1.5, γ = 0.3, r = 0.55. We run 100
simulations starting from 50 different initial configurations.

It can be shown that the standard deviation for the average
magnetization at equilibrium, 〈M〉, is given by

σ =
√(

1 − 〈M〉
2

)(
3 + 〈M〉

2

)
. (25)

The analytical model predicts a final average magnetization
〈Mc〉 = 0.679, hence the standard deviation resulting from
Eq. (25) is σ = 0.54. Comparing this with the standard de-
viation of the simulations at equilibrium, σ = 0.41, we find
a reasonable 75% accuracy. That means the large standard
deviation shown in Fig. 6(b) is an expected effect of the binary
values of the final magnetizations and not of the sampling
process. Eventually, we can also compare the analytical pre-
dictions for the final average magnetization with simulations
for various N and β. The results are shown in Fig. 7. The
reason for the large standard deviations was already explained
above. But regarding the mean values, the accuracy of the ana-
lytical model with respect to the simulations is at a remarkable
83% for Fig. 7(a) and 75% for Fig. 7(b).

VI. CONCLUSION

Network science has become an essential component to
study the dynamics of interacting agents. Despite network
science’s many successes and its flexibility, the research com-
munity has begun questioning some underlying assumptions
made when representing complex systems by networks, such
as the assumption that interactions arise from a combination
of pairwise interactions.
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(a)

(b)

FIG. 7. Final average magnetization, Eq. (24) for t → ∞ (black
dots), vs (a) N and (b) β. Parameters: 〈M(0)〉 = 0.1, γ = 0.3, r =
0.55. (a) β = 1.5, (b) N = 100. Red dots and error bars from 100
simulations starting from 50 different initial configurations.

In this paper, we have investigated this specific point, and
we attempted to clarify the role of group interactions in spin
systems. To do so, we have developed an adaptive voter model
on hypergraphs. A hypergraph is composed of hyperedges that
represent groups of agents. These groups can be of different
size n. The simplest case n = 2 covers pairwise interactions.
The voter model assumes that agents are characterized by a
discrete spin variable, or “opinion,” si ∈ {0, 1}. In a network,
an agent can change this opinion based on interactions with
those agents with which it shares a link. The adaptive voter
model allows, in addition to the change of opinions, that an
agent with a certain probability r rewires its link to another
agent instead of adopting the opposite opinion.

If we want to extend this model to a hypergraph, we need
to specify (i) how groups of agents influence the individual
opinion dynamics, and (ii) which processes should replace the
rewiring mechanism. We have proposed that (i) in groups with
a clear majority the change of individual opinions depends on
the frequency of opinions present in the group, and that (ii)
groups without a clear majority will split into smaller groups
with a single opinion, which subsequently merge with other
groups that support their opinion.

We are interested in whether the dynamics on the hyper-
graph will still allow for consensus, i.e., the domination of
only one opinion and, in that case, whether this consensus is
reached faster or slower compared to the adaptive voter model
on a simple network, without group interactions. Our systemic
variable is the magnetization M(t ), which reaches +1 if con-
sensus with opinion +1 obtained, and −1 if consensus with
opinion −1 is obtained. Values between −1 and +1 indicate
the coexistence of opinions.

With our extensions we have introduced new parameters
that influence the collective dynamics of reaching consensus,
and they will be studied systematically. In this paper, we
focused specifically on the parameter β that determines the
heterogeneity of group sizes, n. Larger values of β allow
for larger groups which may more easily reach consensus.
Additionally, a parameter γ controls the reorganization of
the hypergraph by determining the threshold for split-merge
processes.

Instead of analyzing single computer simulations, we study
the expected dynamics of the adaptive voter model on hyper-
graphs. For the simulations, this requires averaging (i) over
a large number of initial configurations of opinions, and (ii)
over a large number of runs. We also have to address the role
of system size, expressed by the total number of agents, N ,
which is varied in the simulations. For the analytic investiga-
tions, on the other hand, we need to derive a dynamics for
the average magnetization, starting from the initial average
magnetization 〈M(0)〉. The analytic investigations also have
to reflect the existence of “noise,” i.e., randomness in the
initial configurations of opinions and deviations from the ini-
tial average magnetization. These problems are solved in our
paper using a variant of the heterogeneous mean-field (HMF)
approximation [39]. It assumes that groups of varying sizes
can be composed from any set of agents, i.e., interactions
between agents are not restricted.

Our main findings can be summarized as follows. First
of all, we demonstrate that group interactions accelerate the
convergence of the system to total consensus. As a general
insight, this is in agreement with recent results in an adaptive
voter model on 2-simplices [32] and in the bounded confi-
dence model on static hypergraphs [42]. We specifically find
that small biases in the initial configuration of opinions are
more amplified if larger groups can form. Figure 2 shows for
small β the expected behavior of the normal voter model,
but for larger β and larger system sizes a more pronounced
trend toward the biased opinion. Further, the time to reach
consensus drastically decreases with increasing β, as shown
in Fig. 3(a). On the other hand, the possibility of split-merge
processes in groups, indicated by smaller values of γ , slows
down the formation of consensus, as shown in Fig. 3(b).

Secondly, the influence of noise on the dynamics of the
average magnetization is quantified such that we could obtain
a match between the results of computer simulations and of
analytic investigations, as demonstrated in Fig. 7(b). This was
made possible by different methodological contributions. We
were able to derive the formal system dynamics for the aver-
age magnetization, Eq. (19), starting from our assumptions for
the adaptive voter model on hypergraphs. These assumptions
could, for the HMF limit, be formalized in the transition rates,
Eqs. (16) and (17), of a master Eq. (4). We then corrected in
Eq. (24) the analytic result for the average magnetization by
deriving a formal expression for the rate at which magnetiza-
tion trajectories can switch their sign in the presence of noise.
We could provide a scaling relation, Eq. (22), for the relevant
parameters of the switching rate S, Eq. (21). This allowed
us to calculate the corrections for the average magnetization
over a large range of the system parameter β, as shown in
Figs. 6(a) and 6(b). Combined, this led to the good agreement
between simulations and analytics. We note that noise only
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affects the average magnetization because, in the HMF limit,
the magnetization trajectories always go to total consensus.
In general, one should consider that noise also affects the
transient phase, where phenomena like slowing down could
be expected.

Possible extensions for future work shall consider hetero-
geneous initial configurations without applying the hetero-
geneous mean-field approximation. In this case, consensus
would not be the only expected final state, and a phase tran-
sition associated with the fragmentation of the system could
emerge [28]. We conjecture that the phase transition toward
consensus may be present only for initial configurations with
a low number of group interactions and therefore low drift of
the average magnetization.

Moreover, our analysis has been conducted for uniform
initial hypergraphs. We found that the effect of the probability
of rewiring, r, is negligible in the dynamics of the average
magnetization, Eq. (19). In general, one should expect that the
value of r also changes the values of λ and kBT , which then
become functions of (N, β, r). Hence the switching rate S for
the magnetization trajectories will change.

Finally, it would be interesting to investigate the similar-
ities and differences of our model with dynamical systems
where the opinions are continuous variables, and not discrete
ones, for instance by generalizing the bounded-confidence
model to the case of adaptive hypergraphs.

APPENDIX

For analytical investigations, it is useful to simplify the
analytic form of the expected magnetization, Eq. (19). Us-
ing the properties for binomial coefficients k

(n
k

) = n
(n−1

k−1

)
and

∑n
i=0

(n
i

) = 2n, where n, k ∈ Z, and the abbreviations
k̂ = n(1 − γ )� − 2, n̂ = (n − 2), p̂+ = [1 + M(t )]/2, p̂− =
[1 − M(t )]/2, we obtain Eq. (19) in the compact form

〈M(t + 1) − M(t )〉

= 2

{
N∑

n=3

π (n)(n − 1)
1 − M2(t )

4N
[F

(
k̂, n̂, p̂−

)

−F
(
k̂, n̂, p̂+

)
]

}
, (A1)

where F (k̂, n̂, p̂) = Pr(X � k̂) = ∑k̂
i=0

(n̂
i

)
p̂i(1 − p̂)n̂−i is the

cumulative distribution function of the binomial distribution
with k̂, n̂ ∈ Z and p̂ ∈ [0, 1].

In Fig. 8 we compare this analytical solution with computer
simulations for a case in which the average magnetization

FIG. 8. Dynamics of the average magnetization obtained from
Eq. (A1) (black line) and from simulations. Parameters: N = 500,
β = 3, 〈M(0)〉 = 0.3, r = 0.5, γ = 0.3. The red points and the
shaded area are the average and standard deviation of the average
final magnetization for 20 initial configurations, respectively. For
each configuration, we simulate 50 trajectories.

reaches 1. There is a good fit between the curves with an
approximate accuracy of 88%.

The sum in Eq. (A1) converges for N → ∞. This is be-
cause the series converges for n̂ → ∞ due to the fact that the
bound of F (k̂, n̂, p̂) decays exponentially as n̂ → ∞ based
on Hoeffding’s inequality. This convergence was also used
to express the gradient of the potential U (〈M〉), Eq. (20),
independently of finite-size effects.

It is interesting to note that the factors depending on the
probability of rewiring r, Eqs. (16) and (17), cancel out in
Eq. (A1). That means the dynamics of the average magneti-
zation does not depend on the pairwise interactions expressed
by n = 2.

This is reminiscent of the adaptive voter model without
group interactions [32], where the average magnetization of
the system is conserved, i.e., it depends only on the initial
magnetization, but not on the system size or on the probability
of rewiring, r [32].

We can cover the behavior of the adaptive voter model
without group interactions by setting β = 0. Notably, the
group interactions in our model lead to a stochastic drift of
the average magnetization. Therefore, the average magnetiza-
tion is not conserved. The reason for the drift is that in our
model the transition rates, Eqs. (16) and (17), are nonlinear
as opposed to the linear transition rates of the classical Voter
Model.

Finally, for increasing values of γ , more terms in the inner
sum of Eqs. (19) and (A1) are added. For increasing values
of β, the values of π (n) are increased for n � 3, which is at
the expense of the π (2) value. These effects accelerate in our
model the dynamics of the average magnetization.
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