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Reproducing scientists’ mobility: 
a data‑driven model
Giacomo Vaccario1, Luca Verginer1,2 & Frank Schweitzer 1*

High skill labour is an important factor underpinning the competitive advantage of modern 
economies. Therefore, attracting and retaining scientists has become a major concern for migration 
policy. In this work, we study the migration of scientists on a global scale, by combining two large data 
sets covering the publications of 3.5 million scientists over 60 years. We analyse their geographical 
distances moved for a new affiliation and their age when moving, this way reconstructing their 
geographical “career paths”. These paths are used to derive the world network of scientists’ mobility 
between cities and to analyse its topological properties. We further develop and calibrate an agent‑
based model, such that it reproduces the empirical findings both at the level of scientists and of the 
global network. Our model takes into account that the academic hiring process is largely demand‑
driven and demonstrates that the probability of scientists to relocate decreases both with age and 
with distance. Our results allow interpreting the model assumptions as micro‑based decision rules that 
can explain the observed mobility patterns of scientists.

Scientists are highly mobile individuals. This has been true in the past and is even more true  today1. A thorough 
understanding of the relocation patterns and determinants is valuable for national research and immigration 
policy to respond and appreciate the mechanisms behind global scientists’ mobility. According to the  OECD2, this 
mobility is a “key driver of knowledge circulation worldwide”, with implications for the competitive advantage 
of advanced knowledge economies. Therefore, an increasing number of works analyses the mobility of scientists 
and their motivation to  relocate3,4. Many publications have focused on the relationship between movements and 
scientific  impact5–10. Other works have analysed scientists mobility within and across countries, to determine 
policy  impacts11,12 or to study the brain circulation  phenomenon13–16.

While most of these studies focus on the aggregated level, e.g., on bilateral flows between countries, there is 
a need to better understand scientific mobility at the individual  level17,18. Empirical works in this  direction19,20 
are often based on survey data that provide only partial coverage of the global mobility of scientists. Theoretical 
works on scientist  mobility21, on the other hand, are rarely validated against data. Researches in complexity and 
network theory have mostly analyzed scientific  collaborations22–24 or hiring  practices25.

Our work addresses this research gap in a two-fold manner. First, we provide empirical insights into scien-
tific mobility at the individual level, by reconstructing 3.5 million geographical career paths from large-scale 
data sets. Second, we provide an agent-based model that is calibrated against the available data and is capable of 
reproducing the distributions of relocation distances and relocation age. In developing our data-driven model, 
we follow the approach  of26–28. Our model incorporates two factors that are known to affect academic mobility: 
(i) geographical  distance4,29, (ii) prestige, or selectiveness of academic  institutions25,30,31. We also contribute to 
the understanding of global mobility, by reconstructing and analysing the world network of scientists mobility 
at the level of cities, not countries. From this global network, we extract topological features such as the distribu-
tions of degrees, local clustering coefficients, path lengths, and assortativity, to demonstrate that these can also 
be reproduced by our agent-based model.

With the present study, we provide a parsimonious baseline model that replicates many defining features solely 
relying on geographic distance and “scientific impact” measures in addition to the interaction rules describing 
a simplified academic labor market. This model might serve as a starting point for more complex refinements 
taking into account many more factors we know to be important in the relocation choices of high-skill labour, 
e.g., city  amenities4, national borders and  language16. Nevertheless, by only considering two factors, scientific 
impact and geography, the model highlights their fundamental role in understanding scientists’ mobility.
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Results
Empirical findings. By combining two large-scale bibliographic datasets as described in “Materials and 
methods” section we obtain for N = 3, 740, 187 scientists information about the sequence of cities they worked 
in their careers, between 1950 and 2009 from PubMed. The merged dataset contains M = 5485 unique cities. 
The data allows us to construct the geographical “career path” of these scientists. An illustrative example is given 
in Table S1. In short the geographical career paths are the sequence of locations an author has had an affiliation 
with. Note that a move corresponds to a relocation from a city to different city (i.e., mobility within a city is not 
considered a move).

Statistics of geographical career paths. From the career paths we compute the relocation distances scientists 
moved when changing their affiliation, using the Haversine formula for geodesic distances.

The distribution obtained from 62,465 scientists relocating between 2000 and 2008 is shown in Fig. 1a. We 
note that it is a left-skew distribution with a median of 1000 km, i.e., most scientists find a new affiliation within 
a radius of 1000 km around their current affiliation. However, relocations toward cities that are more than 5000 
km away are also quite frequent.

The data also allows us to relate the frequency of such moves to the age of scientists. Because the physical age 
of scientists is unavailable, we rely on their academic age, tai  , also measured in years. tai = 0 when the scientist 
publishes his/her first paper, according to our database. The frequency of any recorded moves over the academic 
age ta is shown in Fig. 1b. Again, it is a left-skew distribution with a median of 7 years. This matches the known 
fact that the mobility of scientists drastically decreases with  age32,33. However, we also identify that some scientists 
change their working location after been active for 40 years.

Reconstructing the mobility network of scientists. While the career paths and their statistics refer to individual 
scientists, we can also analyse the network that results from aggregating all of the career paths of a given year. 
This aggregation changes the unit of analysis to the city level. For each year, we obtain the number of scientists 
NK (t) in a given city K from their publications by taking unique geo-located scientists into account.

We further calculated for each year t the number of scientists �NK←L(t) moving into city K from another 
city L, i.e., the inflow, and the number of scientists �NL←K (t) moving out of city K to another city L, i.e. the 
outflow. For any given pair (K, L) of cities, we then calculate the total flow of scientists between these two cities, 
�NL←K +�NK←L . These flows allow us to visualise the mobility network of scientists at the world level, shown 
in Fig. 2. The links are directed and weighted according to the total flow.

Topological properties of the mobility network. To obtain the topological properties common in network analy-
sis, we aggregate the mobility networks for the period 2000–2008. On this aggregated network, we calculate 

Figure 1.  Characterization of the empirical academic mobility. At the individual level, we have the distribution 
of relocation distances of scientists (a) and the distribution of moves dependent on the (academic) age of 
scientists (b). At the global level, we reconstruct the mobility network for which we plot the distribution 
of degrees (c), path lengths (f), and local clustering coefficients (e). In (d), we plot the average out-flow of 
neighbors of a city a function of its out-flow: each red triangles represents a city, while the red points represent 
averages taken over cities with the same out-flow. Note that the plots in (a,c,d) are in log-log.
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standard measures, such as the in-degree and the out-degree distributions where the in-degree of a city is the 
number of distinct cities from where scientists arrive; while the out-degree of a city is the number of distinct 
cities to where scientists leave. Figure 1c shows that these are a broad distributions. Some cities act as hubs, with 
a large degree, most cities, however, only have a small degree.

The distribution of path lengths, shown in Fig. 1f, measures the minimum number of steps needed to reach 
city i from another city j on the directed network. The small number of steps indicates that the network is dense 
in a topological sense, not necessarily in a geographical one.

The local clustering coefficient, on the other hand, measures whether three neighbouring cities (with respect 
to their geographical proximity) form closed triangles, i.e., whether there is an exchange of scientists among all 
three of them. Figure 1e shows the distributions of these values, and we find that most cities have a small local 
clustering coefficient.

The out-neighbor connectivity, eventually, measures to what extent cities with a certain out-flow (i.e., weighted 
out-degree) are connected to other cities with a similar out-flow. Figure 1d shows that for cities with low out-flow 
there is a higher dispersion, i.e., these are connected to both cities with high and low out-flow. Whereas there 
cities with high out-flow are on average connected to other cities with high out-flow. Even though this would 
suggest a positive assortativity, the mobility network has a neutral (or slightly negative) assortativity coefficient 
(see Table S6 in the SI).

Modeling the mobility of scientists. We now develop a model to reproduce the characteristic empirical 
properties of the scientists’ mobility network discussed above. Precisely, we want to reproduce features both at 
scientist and network level. These are, at the scientist level, (i) the distribution of moved distances, Fig. 1a and 
(ii) the “age at move” distributions, Fig. 1b. At the network level, we want to reproduce (iii) the distributions of 
the topological features shown in Fig. 1c–f, i.e., degrees, local clustering coefficients, path lengths, and average 
neighbour degree.

We develop an agent-based model because we want to model the relocation of scientists, as opposed to a sys-
tem dynamics model that would merely reproduce the flows between cities. This choice implies that macroscopic 
features describing the system, such as the topological properties already discussed, must be emergent properties 
arising from the agent dynamics.

Our model is composed of two entities, agents and locations. Agents represent scientists. Each agent 
i is characterized by three properties that change over time: its position, ri(t) , its fitness, fi(t) , and its years of 
activity yi(t) . Time is measured in discrete simulation steps, each step representing 1 year. When we start our 
simulations at time t = 0 , which is chosen as the year 2000 below, we have to consider that many agents have 
already published before 2000, which is included in yi(t) . For instance, an agent that published its first paper in 
1995 will have a yi(2000) = 5 . This information is essential to measure an agent’s fitness, fi(t = 0) , which we 
do below.

Locations represent cities and host agents. Each location K is characterised by three properties that can 
also partly change over time: its position RK defined in real geographical space by means of longitude and latitude, 
its fitness, FK (t) , and the number of agents it hosts, NK (t) . Note that RK and NK (t) are taken from the available 

Figure 2.  The intercity mobility network at global scale. Only locations with at least 50 active scientists in the 
period 2000 to 2006 are shown. The link width indicates the logarithm of the flows between the given cities. The 
node size is proportional to the number of scientists stationary in that city.
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empirical data. For the position ri(t) of an agent, we assume that at each time step the agent can be found in one 
of the available locations. So ri(t) = RK where K is the location, where agent i is located at time t.

Agent and location fitness. The individual agent fitness fi(t) represents the academic impact of a scientist. We 
proxy this impact by the papers that he/she has co-authored. Precisely, we assign to each paper a score equal 
to the impact factor of the journal (taken from SCImago) where it was published divided by the number of 
co-authors. Then, for each scientist, we aggregate the scores of his/her co-authored papers in the last 2 years of 
activity. By this, we obtain a distribution of fitness values that we can assign to agents.

We assign to each location K a fitness value FK (t) reflecting the quality of the academic institutions hosted in 
a city. To make this idea explicit and measurable, we take FK (t) to be the mean fitness of the agents located in K. 
Note that this approach is in line with how rankings of academic institutions are created. Indeed, university rank-
ings are determined considering the academic impact and quality of the scientists working there. In our model, 
we assume that the FK (t) is public information, and thus, agents may use this information in their decision rule.

Relocation preferences. Our central modelling assumption is that agents prefer to work in locations that provide 
a higher fitness than the one they are currently based. This assumption is rooted in the finding that there is posi-
tive selection of prolific scientists to move to larger and more connected  cities31. These locations, however, can be 
distant from the current location, which implies higher relocation costs. Therefore, an agent i takes into account 
the fitness FK (t) of locations and its geodesic distance �i,K (t) . Agents combine this information in a re-scaled 
fitness score F̃i,K (t) = FK (t)/(�i,K (t))

b for each location K. b is a model parameter, used to weight the impact of 
spatial distances. The bigger b, the more important any spatial distance becomes.

Ranking the values F̃i,K (t) from high to low, each agent then obtains an individual ranking that reflects its 
preferences where to move to. Agents in L will consider only those locations where FK (t) > FL(t) , i.e., where 
the average fitness of scientists is larger than the average fitness of scientists in their city. Hence, each agent i 
assigns to a location K the score:

where �[FK (t)− FL(t)] is equal to 1 when FK (t) > FL(t) and equal to 0, otherwise.

Relocation decisions. Agents only come up with a ranked list of possible locations they would consider to move 
to (and we assume that they send applications to the academic institutions in these locations). However, agents 
do not decide where to move. This decision, whether or not to accept the agent, is taken by the location.

A location K will accept new agents only if it has sufficient capacity. The capacity NK (t) for a given city K, is 
estimated from the number of scientists empirically observed in city K in year t. Dependent on the individual 
ranking of agents, some locations obtain more applications than the capacity allows them to accept. So each loca-
tion ranks the qualified agents according to their fitness fi(t) . Available slots are filled starting from agents with 
higher fitness values until the capacity NK (t) is reached. Precisely, if fi(t) > FK (t) , location K considers agent 
i with probability p = 1 because this allows location K to increase its fitness FK (t) . If fi(t) ≤ FK (t) , location K 
considers agent i only with a probability p = (fi(t)/FK )

s where s is our second model parameter. This parameter 
s represents the selectiveness of locations, the higher s, the more difficult it is to be hired. Hence, if a location K 
has some openings, its probability to accept agent i is:

Agents, regardless of their age, will always try to relocate, however due to the higher probability to terminate 
their career older agents will eventually stop (see Entry and Exit). Conversely, younger agents move more because 
they are more likely to start out in lower fitness locations and thus will move more often until they reach a loca-
tion from which they do not move away. In Fig. 3, we summarise and visualise the basic rules of our model. 
Moreover, in Fig. S19, we have a diagram presenting separately how we model and simulate locations and agents.

Matching agents to locations. In our model agents rank locations, while locations rank agents. To match loca-
tions and agents, we have to solve a matching problem similar to the stable marriage problem. However, our 
problem is slightly different as a location can accept more than one agent until the capacity NK (t) is reached. To 
solve this matching problem, we use an applicant proposing algorithm, similar to the NRMP-algorithm34. The 
details are given in the “Materials and methods” section.

Fitness dynamics. To model those agents not accepted at a new location, we consider that agent which stay at 
their current location, i.e., ri(t + 1) = ri(t) , use the time step to further improve their fitness, fi(t) . For this we 
assume a stochastic dynamics, precisely an additive stochastic process with a variance proportional to the fitness 
of the current location:

where αloc is a parameter proportional to the quality of the agent location, and η is a normally distributed stochas-
tic variable with 0 mean and variance equal to 1 (i.e., η ≈ N (0, 1) ). By this, we assume that the change in fitness 

(1)R(i,K) = �[FK (t)− FL(t)]
FK (t)

(�i,K (t))b
,

(2)p(K , i) =
{

1 fi(t) > FK (t)
(

fi(t)
FK (t)

)s
otherwise

.

(3)fi(t + 1) = fi(t)+ αlocη,
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of an agent depends on its location. Also, it is not guaranteed that agents will improve their fitness; they can also 
lower it. At the end of each time step, we update the fitness of locations, FK (t) , by averaging over the fitness fi(t) 
of all those agents that are currently based there. Hence, location and individual fitnesses are co-evolving in the 
model, but not analyzed in the present work.

Entry and exit of agents. At every time step, agents can exit and enter the system. This dynamic simulates the 
fact that academia is an open system, i.e., every year, scientists exit the systems, but also new ones enter it. Pre-
cisely, agents are removed with a small probability of pe at the end of every time step. Hence, the probability that 
an agents is removed from the simulation after n steps is (1− pe)

n−1pe . This process allows us to replicate the 
observed (academic) survival probability function of scientists (see Fig. S2 in SI).

Model calibration. We use the empirical data not only as an input to our model, to determine the initial condi-
tions, but also for calibration. For this, we use only a subset of the available data (see the “Materials and methods” 
section). A major effort was spent to determine the optimal values of the two free parameters of our model, b 
and s. bopt = 0.5 means that a location A which is twice as far away as B must have a fitness FA = FB ×

√
2 to be 

as attractive as B. Moreover, sopt = 0.5 means that agents are accepted by locations with a probability larger than 
their fitness ratio. For example, an agent with fitness ratio fi/Fk = 0.5 is accepted with probability 0.71 and an 
agent with fi/Fk = 0.25 is accepted with p = 0.5.

Model validation. The calibrated agent-based model has to prove its evidence in that it can reproduce the whole 
set of empirical findings that have not been used during the calibration procedure. We validate the model by 
comparing two distributions on the level of scientists, and four distributions on the level of the mobility network. 
To simulate a large number of realisations, we focus on three neighbouring countries in Europe, namely Ger-
many, France and the UK. Furthermore, we restrict the simulation to the period 2000 to 2006. The upper limit 
2006 is given by the fact that the last publication in Author-ity is in 2009, and we require a 3-year window 
to identify moves. We do not use the period from 1950 to 2000 since they may represent academic systems from 
very different historical periods.

Results of agent-based simulations. The results of the validation are shown in Figs. 4 and 5. To allow for a direct 
comparison, we plot the empirical data in red and the simulation in blue. We can report a good match of all dis-
tributions both on the level of scientists and on the network level. Specifically, on the scientists’ level, we are able 
to reproduce the two distributions of relocation distances and of age when moving, see Fig. 4a,b.

On the network level, we are able to reproduce the four distributions of in-degrees, out-degress, local clustering 
coefficients and average neighbor degree, see Fig. 5a–f. We emphasise that these results are far from being trivial. 

Figure 3.  Example of relocation rules. Four agents ( a1 , a2 , a3 and a4 ) are hosted in three locations, A, B or C, 
representing London, Paris and Berlin. Each location has a maximum number of available positions illustrated 
by small circles: NA = 2 , NB = 5 and NC = 3 . In this image, agents a1 and a2 compute the rescaled fitness of 
the available locations (A and C) and rank these location accordingly. Here, we have assumed that A and C have 
the same fitness ( FA(t) = FC(t) ), but A is closer to B than C ( �i,A < �i,C for i = 1, 2 ). For this reason, both a1 
and a2 express a preference for A over C. Since location A has NA = 2 and one position is already taken, A must 
decide to accept either a1 or a2 , depending on their fitness.
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As we start with an agent-based perspective, the results of our simulations refer to career paths of individual 
agents. From these, we have to reconstruct an aggregated network of mobility. Our simulation results for the 
network topology are reported for these simulated networks.

In conclusion, we report that our agent-based model captures the different features of the empirical data well, 
both on the scientists’ and the network level, without using direct information from these for the calibration.

Discussion
This paper provides several results with relevance for both the empirical and the theoretical understanding 
of the global mobility of scientists. As a novel contribution, we introduce the concept of a geographical career 
path of an individual scientist, which can be extracted from data. Using records of 3.5 million scientists, we 
provide a statistical analysis of such career paths, that later form the basis for comparison with our model, on 
the scientists’ level. Aggregating over these career paths, we are further able to reconstruct the world network of 
scientists’ mobility, with cities as nodes and inflow/outflow of scientists as links. With this, we reveal the patterns 
of scientists’ mobility on two levels: the level of an individual scientist (age, relocation distance), and the level of 
cities forming a global network, which is a new empirical insight.

The most important contribution, however, is an agent-based model that allows reproducing these empirical 
findings on both the scientist and the city level. In our model, we assume as most relevant factors geographical 
distances, academic importance, and selectiveness of cities. The model uses as input for the initial conditions only 
variables that can be proxied by the available data. In particular, academic importance, denoted as the fitness of 
agents, is proxied from the available publications of scientists. The fitness of locations, another ingredient of the 
model, is then obtained by averaging over the fitness of agents at the particular location.

The agent-based model succeeds with simple assumptions for the relocation of agents. Agents rank all loca-
tions according to their fitness and their distance to the current location. However, they do not decide whether 
to move. This choice is made by the locations using the information on the fitness of the agents and capacity 
constraints. In essence, this poses a matching problem and can be related to similar problems discussed in the 
literature.

Our agent-based model only considers two free parameters, which need to be calibrated against the available 
data: b weights the spatial distance between the current location of an agent and any other location, s weights the 
selectiveness of locations when accepting agents that have a fitness below the location’s fitness. We find as optimal 
parameters (sopt, bopt) = (0.5, 0.5) . These parameters are maximally different from 0 or 1 and indicate that both 
selectiveness and distances are essential to reproduce the empirical mobility patterns. bopt = 0.5 characterizes 
the supply side, i.e., the ranking of locations by the agents. A location A needs to have 

√
n times the fitness of 

another location B if it is n times further away, to be equally attractive for an agent. sopt = 0.5 characterizes the 
demand side, i.e., the ranking of agents by locations. Provided there are sufficient openings available, an agent 
with a fitness ratio fi/Fk = 0.5 is accepted more than 2 out of 3 times, and an agent with fi/Fk = 0.25 still has 
a 50% chance to be accepted.

Let us emphasise once again that we find that both sopt and bopt are different from zero. This finding implies 
that both geographical distance and matching locations and agents’ fitness values are needed to reproduce the 
mobility network. When looking into simulations where s = 0 and b > 0 , we find that the relocation distances 
P(�) is qualitatively reproduced, but the topological features are not (see Sect. 9 in the SI). This confirms the 
intuition that distance is a key ingredient to capture geographical aspects of scientist mobility, but it is not 
sufficient to capture the topology. Likewise, when looking into simulations where s > 0 and b = 0 , only some 
topological properties are recovered, for example, the path length distribution (see Fig. S18e). However, other 
network features (such as the in- and out-degree) are not (see Fig. S18a,b). From a qualitative point of view, we 
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Figure 4.  Comparison of simulated and empirical individual scientist features. (a) Distribution of relocation 
distances of scientists. (b) Distribution of moves dependent on the (academic) age of scientists, (red) indicates 
the empirical distribution, (blue) the distributions that are obtained from our agent-based simulations.
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find that disregarding prestige ( s = 0 ) has a larger effect on the model’s ability to capture the topology of the 
mobility network.

Using the model calibrated with the optimal parameters, our simulations match the available empirical data 
quite well. This is remarkable because the model does not include many factors which arguably play a role in the 
relocation decision. In other words, only using minimal assumptions about the supply (scientists) and demand 
(cities), and a simple matching mechanism, we are able to capture emergent features of the scientist mobility 
network. Some differences between the simulated and the empirical distributions become only noticeable if we 
plot the network of scientists’ mobility on the European scale, as shown in Fig. 6. We observe that the empiri-
cal network in Fig. 6a has more pronounced hubs than the simulated network shown in Fig. 6b,c. Moreover, 

(a) (b)

(c) (d)

(e) (f)

Figure 5.  Comparison of empirical and simulated topological properties of the mobility network. Distributions 
of (a) in-degrees, (b) out-degrees, (c) local clustering coefficients (directed) (d) local clustering coefficients 
(undirected), (e) path lengths and (f) average neighbor in-degree. Red triangles indicates the empirical 
distribution, and blue circles distributions obtained from the simulation. The error bars correspond the standard 
deviations of 30 realisations of the simulation and the bands the 95% confidence interval.
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our model predicts more exchanges between Germany and the UK, then we observe in the empirical network. 
Similarly, the model predicts more exchanges between less central German and British cities. Note also that in 
the empirical network, significantly more French cities are linked to Paris than among themselves compared to 
the simulations.

Finally, we stress that more factors are influencing the relocation choices of scientists than explicitly covered 
in our model. For example, quality of life, better networking opportunities or higher salaries might be relevant 
factors here. The more remarkable is the fact that our model, even at this level of detail, works considerably well.

In summary, we have provided the first agent-based model reproducing the mobility of scientists. In a data-
driven approach, our model has been calibrated and validated against data, and we have found a remarkably good 
match between simulations and empirics. We show that minimal decision rules capture many complex features 
of the observed mobility of scientists. Besides, we have quantified the relative importance between geographical 
distances and academic attractiveness from the perspective of a scientist trying to relocate.

Materials and methods
Extracting individual career paths of scientists. For our work, we use the MEDLINE database, the 
largest open-access bibliographic database in the life sciences. Our analysis is based on two datasets provided by 
Torvik and co-authors, namely MapAffil35 and Author-ity36, which have been extracted from MEDLINE. 
MapAffil lists for each MEDLINE paper and each scientist the disambiguated city names of the listed affiliation 
(37,396,671 city-name instances). It further gives a unique identifier as well as the geo-coordinates of each city. 
Author-ity contains the disambiguated scientist names, linking them to their respective publications. Com-
bining these two sources of information about geo-coordinates and time allows us to construct the geographical 
“career path” of scientists, using the approach  of16.

Formally we denote a career path of a scientist i ∈ N as a sequence pi , for example, pi = {At0 , At1 , At2 , Bt2 , 
Bt4 , Ct5 , Ct6} . A denotes the city as defined by its geo-location RA = (X,Y) where X gives the latitude and Y the 
longitude according to the data from MapAffil. The subscript t0 refers to the year scientist i was affiliated in the 
respective city, according to the career path data obtained. For more information about the data used, see the SI.

Determining locations in geographical space. Defining the boundaries of a city is a central problem 
in urban studies. A standard definition available for US cities is the “Metropolitan Statistical Area” (MSAs)37. 
However, as the name suggests, this definition is not available outside the US. Therefore, to identify cities, we 
rely on the definition of “location” provided by Google Maps. This definition reflects administrative boundaries, 
which are not perfect substitutes. As argued  by38,39 natural and administrative definitions follow different size 
distributions. However, because we do not argue about the size distribution of cities, this is not a crucial concern.

Determining the free model parameters. Parameter b weights the impact of spatial distances on the 
individual rankings of agents. b = 0 would imply that distances do not play a role in relocation preferences; with 
b = 1 , a location A which is twice as far away as location B needs to have twice the fitness of B ( FA = 2× FB ) to 
be equally attractive. In general, a location A which is n times as far away as B must have a fitness FA = nb × FB 
to be as attractive as B.

Figure 6.  Empirical and Simulated mobility networks for France, Germany and UK. The empirical network 
(a) depicts the flows between cities as observed in the the period from 2000 to 2006. The thickness of the edges 
is proportional to the log of number of moves between the two cities. In (b,c) two realisations of the ABM are 
shown. In (b,c) 23,189 and 25,217 agents moving between 147 cities have been simulated, respectively. The 
difference in the number of agents is due to the stochastic entry and exit dynamics.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10733  | https://doi.org/10.1038/s41598-021-90281-9

www.nature.com/scientificreports/

Parameter s weights the flexibility of locations to still accept agents with a fitness less than the fitness of the 
location. For s = 0 , the probability of a location to accept agents is independent of their fitness and always equal 
to 1 ( p(K , i) = 1 ); with s = 1 the probabilty to be accepted is equal to the ratio between the agent’s and location’s 
fitness ( fi/Fk ), e.g., an agent with fi = 0.5× Fk will be accepted with probability 1/2. In the case of s > 1 , an 
agent is accepted by a location with a probability smaller than their fitness ratio ( p(K , i) < fi/Fk).

Calibration procedure. To calibrate the model parameters b, s, we use an established approach in agent-
based  modeling28, machine  learning40–42 and computer simulations in  general43. It combines two elements: (a) a 
grid search and (b) a performance score.

The grid search consists of an exploration of the (low dimensional) parameter space through computer simu-
lations. For b and s we consider the values {0.0 , 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}.

For each parameter combination, we obtain from the simulations two distributions for the inflow and out-
flow. To determine the optimal combination of (b, s), we compare the simulated and the empirical inflow and 
outflow distributions. For this comparison, we use a performance score based on the Kolmogorov–Smirnov 
(KS)  statistic44.

Precisely, for each combination of parameters (b, s), we compute the KS-statistic between the empirical and 
simulated distributions of inflow, D1(b, s) , and of outflow D2(b, s) . We then define the performance score as 
1/(D1(b, s)× D2(b, s)) , such that the optimal combination (bopt, sopt) maximizes this score.

From the calibration procedure, we find optimal parameters (sopt, bopt) = (0.5, 0.5) . The comparison between 
the empirical and the simulated distributions is shown in Fig. S7a,b in SI. The close match demonstrates that 
our model is correctly calibrated.

Note that we use the intercity distance as an input for the model, and the b parameter weights its importance. 
However, we do not use distance information during the calibration procedure. We use instead information on 
the inflow and outflow of scientists (i.e., a “stock” summary statistics). Hence, if it is not trivial, whether the 
model is able to reproduce geographical aspect of scientist mobility.

Simulation initialisation. At the beginning of the simulation, we populate the cities at only 80% capac-
ity, which means that we initiated the simulation with 22,000 agents, and ca. 300 locations. As the starting year 
t = 0 , we take 2000. From each city, we take its geographical position and the number of scientists in the year 
2000. We assign these quantities to locations to characterize their RK and NK (t = 0) . The initial fitness value of 
a location, FK (t = 0) , is determined by averaging over the fitness values of those agents based in the given city 
in 2000.

From each scientist, we obtain its geographical position (in a given city), his/her academic impact, and the 
years of activity as of the year 2000. We assign these quantities to agents to characterize their ri(t = 0) , fi(t = 0) 
and yi(t = 0) . The academic impact is proxied by the papers that a scientist has authored in the two years prior. 
As above described, we assign to each paper a score equal to the impact factor of the journal where it was pub-
lished divided by the number of co-authors. Then, for each scientist, we sum the scores of the papers he/she has 
co-authored between 1998 and 2000. This defines the starting fitness of agents, i.e., fi(t = 0) . We then run the 
agent-based model using parallel updates of all agents per time step.

Simulating the entry and exit dynamics of agents. Our empirical analysis finds that the number 
of scientists is almost constant in 6 years time windows (see Fig. S3 in SI). Thus, the total number of agents is 
almost constant during our simulations. Specifically, the number of new agents nn is proportional to the number 
of removed agents nr at the previous time step. We sample nn from a Gaussian distribution with mean nr and 
standard deviation σ = nr(0.1/2).

Simulating the matching problem. To match agents with locations, we first create a ranking of the 
agents according to their fitness. Starting from the agent with higher fitness, we look at its top five preferred loca-
tions. If one of these locations accept the agent, we move it there. When an agent i has moved to a new location K, 
we update its position vector, ri(t + 1) = RK , and keep its fitness constant, fi(t + 1) = fi(t) . Then, we consider 
the second agent in the ranking and keep trying to match it to a new location. With this approach, we ensure 
that agents relocate to their preferred locations if they are accepted. Also, since we first try to match agents with 
higher fitness, locations obtain agents with higher fitness, i.e., their preferred ones.

Data availability
The raw XML data on all MEDLINE articles are available for download from the NIH at https:// www. nlm. nih. 
gov/ datab ases/ downl oad/ pubmed_ medli ne. html, ftp:// ftp. ncbi. nlm. nih. gov/ pubmed/ basel ine The disambigua-
tion of authors (Authority) and affiliations (MapAffil) has been obtained from http:// abel. lis. illin ois. edu/ downl 
oads. html Access to this resource can be requested for free from the maintainers through the online form on the 
same page. Note that due to an agreement with the providers of Authority and MapAffil, these datasets may only 
be shared by requesting access through the previously mentioned online form. We make the aggregated mobil-
ity network at city level available with no individual identifying information through figshare after publication.
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